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Abstract. Here we propose a new physical approach to the high-speed conformation of a Newtonian viscous
liquid into a fiber (high speed fiber drawing), which suppresses all well-known axisymmetric and asymmetric
instabilities during the fiber drawing. Our approach is based on the application of an appropriate gas
pressure profile along the viscous jet or fiber axis, provided by a special subsonic micro-nozzle concentric
with the fiber. The micro-nozzle design and optimization is mathematically provided.

PACS. 47.15.Gf Low-Reynolds-number (creeping) flows – 47.15.Fe Stability of laminar flows – 47.27.Wg
Jets

1 Introduction

The generation of fibers from very viscous liquid precur-
sors is an ancient and increasingly growing activity of
mankind, and involves enormous global revenues. From
polymer fiber production used in the huge-market textile
industry, to the more recent optical fiber drawing pro-
cesses, handling a highly viscous fluid to form a long, thin
and uniform fiber is as common as ubiquitous. In gen-
eral, current industrial processes are optimized by means
of a few process approaches (classical hot drawing-used
by the large optical fiber companies-, and direct extru-
sion through a hole), imposed in many cases by a sec-
ular inertia. Drawing of glass fibers is typically domi-
nated by viscous forces modified by heating and cooling
the molten threadline. The classical fiber drawing present
several well known limitations and problems. In partic-
ular, under appropriate conditions, perturbations intro-
duced in the threadline lead to an axisymmetric instability
referred to as draw resonance (see e.g. [1–3] and references
therein). The draw resonance sets on when the draw ra-
tio E = V1/Vo exceeds a value close to 20 (Vo and V1 are
the input and the output velocities in the threadline) and
manifest itself as a self-sustained oscillation of the cross
sectional radius of the drawn fiber or, in other words, as a
propagating wave of swelling and contractions. Although
heat removal from the threadline, which increases the vis-
cosity of the molten liquid, stabilizes the spinning process
leading to a significant increase in the threshold value E,
draw resonance imposes a severe limit for the drawing
velocity V1 under currently required high-speed produc-
tivities [4]. When a high speed gas stream is used to shear
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the surface of the molten highly viscous liquid and to ex-
tract the fibers, it is impossible with currently available
techniques to precisely control the fiber diameter and the
whipping instabilities (violent lateral motion) of the fibers,
which make them difficult to handle. Besides, direct extru-
sion from “bushings” (cavities holding the melted glass)
exerts strong shear stresses on the fiber while it is drawn
through the orifice in the bushing, and often presents ex-
pensive maintenance problems and clogging. Also, some
other interesting instabilities appearing when extruding a
non-Newtonian liquid through a capillary have been de-
scribed in [5,6].

Here we propose a general methodology and process
for a Newtonian high viscosity liquid fiber — e.g. a glass
— to (i) provide a perfect control on the fiber diame-
ter, (ii) suppress the speed limits of the hot fiber drawing
process owing to instabilities, and (iii) overcome the high
shear stresses and clogging problems of direct extrusion.
In this work, we aim to show that these three difficult tech-
nological challenges can be accomplished by a new physi-
cal approach which defines an entirely new fiber drawing
process as here proposed.

2 The newly proposed fiber drawing process

Our suggested process involves drawing the fibre (either
from a preform or from a bushing) concentrically sur-
rounded by a carefully shaped subsonic gas flow trough a
special small nozzle (see Fig. 1). A preform is a solid rod,
with a much larger diameter than the final fiber, which
is introduced in a region where it is heated up to the
yield point and above to produce the drawn fiber. The gas
flow imposes an appropriate steady pressure distribution
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Fig. 1. Proposed experimental set-up.

around the fiber while it is drawn. The important fea-
tures of this co-flow combination are: (i) the gas pres-
sure distribution on the fiber can be calculated to sup-
press instabilities for any fiber drawing velocity (which
means a theoretically unlimited increase in productivity);
and (ii) the shear stress on the fiber can be reduced to a
minimum (this allows the controlled production of com-
plex and fragile fiber structures, hollow fibers, photonic
bandgap fibers [8], etc.). Our method would improve not
only fiber uniformity and stability but also would provide
a precise control on the fiber temperature profile and in-
ternal structure (avoiding diffusion, crystallization, etc.).
First, in optical fiber manufacturing, the fiber quenching
time controls the amount of undesired crystallization of
the fiber bulk, that can be precisely engineered by the gas
co-flow (or “sheath” flow) temperature profile since the
convective heat transfer coefficient can become dominant
over radiation by the sheath flow. This means that the
gas temperature distribution along the nozzle would be
very rapidly transferred to the drawn fiber, providing the
means for a simple and accurate control on the fiber tem-
perature profile. Secondly, the sheath gas flow may be used
to control the chemicals surrounding the fiber that may
diffuse into it. These two issues would additionally imply
a significant improvement of the amorphous structure of
the fiber and its eventual clarity limit [7]. Additionally,
the gas pressure drop along the nozzle results in a very
simple feedback control parameter to mitigate any possi-
ble small, long term fiber diameter variation associated to
possible external thermal oscillations or material inhomo-
geneities (see for example [4] for fiber diameter feedback
control in high speed fiber drawing), without the need to
stop the process, to change the extrusion nozzle or the
drawing speed. Finally, since the fiber diameter is signif-

icantly smaller than the micro-nozzle internal diameter,
that fiber diameter can be changed within a certain size
range without the need to change the micro-nozzle.

One of the main issues of this work is to show how
the well-known fiber drawing instability which limits the
maximum drawing speed, the so-called draw resonance
instability, can be suppressed just establishing a proper
pressure profile along the liquid molten threadline. This
can be accomplished if one surrounds the fiber by a gas
environment. Obviously, since a variable pressure distri-
bution imposes a gas stream co-flowing with the liquid
theadline, this stream provokes a tangential stress on the
liquid interface and an enhanced heat transfer from the
liquid to the gas. We will focus our attention on the ben-
efits of using an optimized pressure distribution along the
threadline, limiting ourselves to the ranges in which the
collateral (but beneficial) effects of the tangential stress
and the heat transfer on the dynamics of the thread line
can be neglected.

As it will be shown below, the fiber spinning is a pro-
cess in which viscous forces in the liquid generally dom-
inate over the rest, namely, inertia, surface tension, and
gravity forces. This is particularly true for drawing veloci-
ties V1 of the order of 0.5 m/s and below, which is typically
the velocity achieved in most of the current industrial pro-
cesses. However, it should be pointed out that in the case
of ultra-high speed drawing (V1 above 20 m/s), the iner-
tia forces may become important and, consequently, its
effects should be considered in the analysis. In the pro-
posed method, this would be the case if the imposed gas
pressure drop were large enough to have a non negligible
fraction of that pressure drop employed on building up the
inertia of the liquid threadline. In the present work, we re-
strict ourselves to moderate drawing velocities, typically
below 5 m/s, for which the process can still be assumed
viscosity-dominated. The analysis taking into account the
liquid inertia, important for large withdrawal velocities,
will be considered in future works.

3 Formulation of the problem

We consider a Newtonian liquid concentrically drawn
through a small nozzle with length L, and surrounded
by a gas stream as sketched in Figure 1. Assuming an ax-
isymmetric configuration (the effect of asymmetries will be
subsequently discussed), the liquid hydrodynamics obeys
the Navier-Stokes equations, which in cylindrical coordi-
nates read

UR + VX + U/R = 0
ρ(UT + U UR + V UX) = −PR + (2µUR)R

+ [µ(UX + VR)]X + 2µ(UR − U/R)/R

ρ(VT + V VR + V VX) = −PX + g

+ (2µVX)X + [µR(UX + VR)]R/R,
(1)

where U and V are the radial and the axial components
of the velocity, respectively, P is the liquid pressure and
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g is the gravity acceleration (assumed as applied in the x-
direction only). T , X and R are the time, the axial and the
radial coordinates. µ and ρ are the viscosity and density of
the liquid. Subindexes denote differentiation. In addition,
the stresses on the interface in the normal and tangential
direction must be balanced,

P − Pg − 2µ

1 + F 2
X

[UR + F 2
XVX − (VR + UX)FX ] =

σ

(1 + F 2
X)1/2

(
1
F

− FXX

1 + F 2
X

)
,

µ

1 + F 2
X

[2FXUr + (1 − F 2
X)(VR + UX) − 2FXVX ] = τ,

(2)

where F is the position of the interface, Pg is the gas
pressure on the interface, σ the liquid surface tension and
τ is the tangential stresses exerted by the gas on the liquid
column. Finally, the surface must move with the velocity
field on the interface,

FT + V FX − U |R=F = 0. (3)

If the variables are expanded in Taylor series with respect
to R,

V = V + V2 R2 + ...

U = −V X R/2 − (V2)X R2/4 + ...

P = P + P2 R2 + ..., (4)

and the slenderness of the liquid column is taken into
account (a ∼ O(R) � O(L)), the following quasi-one-
dimensional equations of continuity and axial momentum
can be derived from the above equations (see [3,9,10] for
details),

(F 2)T + (F 2V )X = 0

ρF 2[V T + V V X ] = [3µF 2V X ]X + ρgF 2

− F 2(Pg)X + σFX + 2τF. (5)

The momentum equation, besides the forces exerted by
the gas on the liquid, incorporates all the relevant effects,
namely, the inertial, viscous, gravitational, and surface
tension forces.

Before we proceed with the problem analysis including
the initial and boundary conditions, in order to gain some
physical intuition on the particular application we are
dealing with, it would be illustrative to consider the pro-
duction of an optical glass fiber with diameter a = 100 µm,
drawn at a velocity of V1 = 3 m/s through a nozzle of
L = 15 mm. Assuming that the liquid temperature stays
almost constant during the fiber drawing, typical values
of the relevant physical constants of the molten glass are
σ = 0.250 mN/m, ρ = 3000 Kg/m3 and µo = 103 Pa s
(which corresponds to a temperature of about 1300 K),
where for our purposes here we use µ = µo as a constant
viscosity. If we compare the gravity forces term of the or-
der of ρga2, the liquid acceleration term of the order of

ρa2V 2
1 /L and the surface tension forces term of the or-

der σa/L, to the much larger viscous and pressure forces
terms of the order of µa2V1/L2, we obtain

Gravity Forces
Viscous Forces

∼ ρgL2

µoV1
∼ 0.002

Accelerat. Forces
Viscous Forces

∼ ρV1L

µo
∼ 0.15

Surf. Tens. Forces
Viscous Forces

∼ σL

µoaV1
∼ 0.01. (6)

Therefore, gravity forces, liquid acceleration and surface
tension forces are negligible compared to the much larger
viscous and pressure forces.

Let us then define non-dimensional variables t =
T V1/L, x = X/L, f = F/a, v = V /V1, p = Pg/(3µoV1/L)
and fs = τ/(3µoV1a/L2) standing for the non-dimensional
time, axial coordinate, fiber radius, liquid velocity, gas
pressure, and axial resultant of the tangential gas surface
stresses respectively, where µo is a reference liquid viscos-
ity. Based on the above discussion, one can further reduce
the equation (5) to:

∂tf
2 + ∂x(f2v) = 0,

∂xp = ∂x(µ/µof
2∂xv)/f2 + 2fs/f (7)

with boundary conditions

at x = 0: p = po =
LPo

3µoV1
, f = E1/2 and v = E−1,

and

at x = 1: p = pa =
LPa

3µoV1
, f = 1 and v = 1, (8)

where E = V1/Vo, Vo is the intake liquid velocity (or the
glass preform velocity in glass fiber drawing); Po and Pa

are the upstream gas stagnation pressure and the external
ambient pressure, respectively.

It is worth noting that the higher the liquid viscosity
is, the closer the real radial velocity profile is to the flat
profile assumed in the quasi-one-dimensional model, since
the viscous diffusion time tv ∼ ρa2µ−1

o is many orders
of magnitude smaller than the hydrodynamic time to ∼
LV −1

1 (i.e., µoL(ρV1a
2)−1 � 1).

In general, there is a strong non-linear dependence of
the liquid viscosity on temperature Θl, µ = µ(Θl), follow-
ing an Arrhenius-type law of the form µ(θl)/µo = ζ =
expA/(NAkΘoθl), where A is an activation energy, NA is
Avogadro’s number, k is Boltzmann constant, θl = Θl/Θo,
and Θo is the upstream gas stagnation temperature. In
general, the temperature Θ in the liquid column is given
by the equation

ρC[(Θl)T + U(Θl)R + V (Θl)X ] =
φv + [kl R (Θl)R]R/R + [kl(Θl)X ]X (9)

where kl and C are the thermal conductivity and heat
capacity of the liquid, respectively, and φv is the viscous
dissipation work given by

φv = µ{2[U2
R + (U/R)2 + V 2

X ] + (UX + VR)2}. (10)
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The energy equation (9) can be further simplified if one
keeps in mind that we are dealing with a viscous slender
fiber for which the axial velocity profile can be assumed
flat. First of all, axial conduction is negligible compared
to radial conduction and axial convection is dominant ver-
sus radial convection. Secondly, after comparing the dis-
sipation term, of the order of µoV

2
1 /L2, to the convection

term, of the order of ρC∆XΘlV1/L where ∆XΘl is the
axial variation of temperature, one concludes that dissi-
pation is unimportant. Thus, the local temperature profile
is given, in dimensionless form, by

v∂xθl = α∂r(r∂rθl)/r (11)

with boundary conditions θl(x, f) = Θs/Θo (θl(x, 0) �=
∞) and θl(0, r) = 1, where Θs is the non dimensional gas
temperature at the fiber surface and α = klL/(V1ρCa2).
We can distinguish two limiting problems:

1. α � 1: in this case, we can assume θl = Θs/Θo. We
call this the “gas limited” (GL) case;

2. α � 1: in this case, we can assume θl = 1. This is the
traditional isothermal limit (IT).

In the GL case, the temperature profile of the fiber in the
radial direction can be considered uniform, and the tem-
perature is controlled by the ability of the gas to transport
the heat through its thermal boundary layer. In the IT
limit, the liquid bulk remains at the initial Θo tempera-
ture because of the inability of the gas thermal boundary
layer to evacuate the heat from the liquid.

On the other hand, owing to the disparity of the liq-
uid and the gas particle residence times, the gas can be
considered steady for any non-steady liquid motion of in-
terest (including motions with wavelengths of the order of
the fiber diameter). Thus, the gas pressure and temper-
ature can be considered as steady variables in the prob-
lem, which are functions of the axial coordinate only and
can be calculated at any time given the local nozzle and
fiber geometries. In addition, the gas flow is governed by
the well known isentropic compressible one-dimensional
inviscid equations: the gas pressure and temperature dis-
tributions are given by their stagnant values Po and Θo,
respectively, and the nozzle geometry through A(x), its
local cross section area. The gas expansion in the nozzle
provokes a change in the gas temperature along the noz-
zle. Making dimensionless the gas pressure and tempera-
ture with their stagnant values, the gas temperature θg is
given by

θg = 1 − ∆θg = (1 − ∆pg)(γ−1)/γ (12)

in the isentropic assumption, where γ = C
(g)
p /C

(g)
v is the

adiabatic gas constant, C
(g)
p and C

(g)
v are the usual gas

heat coefficients at constant pressure and density, respec-
tively; and ∆pg and ∆θg are the pressure and temperature
drop at a certain point of the nozzle from its entrance.

Further assumptions must be made in order to prop-
erly model the tangential stress exerted by the gas and the
heat removed or added from the gas to the liquid thread-
line.

3.1 Gas boundary layer, viscous shear stress, and heat
transfer on the fiber surface. Theoretical assumptions

The gas boundary layer on the liquid jet has a thickness of
the order of δ ∼ L Re

−1/2
g where Reg = ρgVgL/µg is the

Reynolds number of the gas stream, Vg is the gas velocity
and, µg and ρg are the characteristic gas viscosity and
density. The thickness of the gas boundary layer is, as a
function of the stagnation conditions of the gas,

δ ∼ (µgLP−1
o )1/2(RgΘo)1/4, (13)

where Rg = C
(g)
p − C

(g)
v as usual, and we have estimated

the gas velocity as Vg ∼ (Po/ρg)1/2 and the density of the
gas as ρg ∼ Po/(RgΘo). The tangential viscous stress τ
acting on the jet surface, owing to the much faster gas
stream, is then of the order of

τ ∼ µgVg/δ ∼ (µgL
−1Po)1/2(RgΘo)1/4. (14)

Comparing the axial resultant per unit volume of the vis-
cous stress on the surface, Fs, of the order of Fs ∼ τ/a,
with the extensional (axial) resultant of the viscous stress,
Fv, of the order of Fv ∼ µoV1/L2, and since Po ∼ µoV1/L,
one obtains

Fs/Fv ∼ (µg/µo)
1/2 (

RgΘo/V 2
1

)1/4
L/a. (15)

We seek for production velocities V1 much larger than
µgµ

−1
o L2a−2 (RgΘo)

1/2 (of the order of about 10−3 to
10−2 m/s in practical situations), for which Fs � Fv, and
the contribution of the surface stress is negligible versus
the axial component of the normal pressure stress, of the
order of PoL

−1 ∼ µoV1L
−2. Thus, the equations in (7)

reduce to

∂tf
2 + ∂x(f2v) = 0,

∂xp = ∂x(ζf2∂xv)/f2 (16)

where ζ = µ/µo. Owing to the strong dependence of vis-
cosity with temperature, limited liquid temperature vari-
ations (about 5 to 20% of Θo in practice) are sufficient
to increase the liquid viscosity by orders of magnitude,
which is a mechanism suppressing most instabilities in
itself. This is why, traditionally, non-isothermal drawing
owing to radiation is the way to guarantee fiber shape
stability because of the consequent substantial increase
in liquid viscosity as the fiber proceeds downstream (the
larger the viscosity, the smaller the perturbations growth
rate), although it requires a limited production velocity,
given by V1 � klL/(ρCa2) (α � 1). In our study, in
which radiation is assumed absent, non-isothermal draw-
ing is bounded by the GL case, and our method would
provide an enhanced fiber stability owing to an enhanced
heat removal by the gas sheath. In the GL case, consid-
ering a portion of the thread line, its axial temperature
variation ∆XΘl of the liquid owing to the heat trans-
fer through the gas thermal boundary layer δT ∼ δ/Pr
where Pr is the Prandtl number (in reality, δT ∼ δ since
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Pr = µgC
(g)
p /ko ∼ O(1), ko being the gas thermal con-

ductivity at temperature Θo) is of the order of

ρCV1∆XΘla
2 ∼ ko

∆Θ

δ
aL (17)

where ∆Θ is the transversal variation of the gas temper-
ature across the gas boundary layer. In many practical
situations, we have L(ρCaV1)−1koδ

−1 � 1, for which the
heat transfer from the gas to the liquid can be considered
negligible, and the liquid can be considered isothermal.

It is worth emphasizing here that the non isother-
mal drawing stabilizes the fiber since it hardens in the
drawing process. However, in this work we will go farther
ahead showing that, even in the isothermal limit (α � 1
or V1 � klL/(ρCa2)), the most unstable and difficult
to control case corresponding to high speed and ultra-
high speed fiber drawing (more than 20 m/s), our method
will suppress the most dangerous source of quality break-
down: the drawing instabilities. Thus, we will focus on
this particular limit, also considered by Yarin et al. [3]
in the case of simple drawing. We will show that a care-
fully shaped co-flowing gas stream provide the means to:
(i) completely stabilize the fiber; (ii) yield fiber homogene-
ity and/or shape control, and (iii) a subsequent control on
fiber quenching.

4 Suppression of fiber instabilities

Using the above given problem formulation, in this section
we present an analysis of the novel proposed process as a
way to suppress the fiber drawing instabilities.

4.1 Suppression of the non-symmetric instability
(fiber whipping)

As a result of imposing a stream of gas coflowing with the
threadline, whipping instabilities are set after the nozzle
exit if the gas exit velocities are over a certain threshold.
These instabilities are related to the shear stresses exist-
ing on the interface of two coflowing fluids travelling at
different velocities, as in the classical Kelvin-Helmholtz
stability analysis (see [11,12]). Several analyses on the in-
fluence of a coaxial gas stream on the linear stability of
a liquid jet have been carried out ([13–15] among others)
and most of them are devoted to determine the droplet
size distribution resulting from the jet breakup. In the
context of thread-annular flows (a thin cylindrical elastic
core surrounded by coflowing fluid), which could resemble
more closely the particular conditions of our problem, it
has been shown that the Reynolds number and the thread
velocity have a significant influence on the unsteady be-
haviour of the thread [16]. However, an analysis including
the effect of an axial gas pressure gradient is, as far as we
know, not available.

The existence of this gas velocity threshold can be jus-
tified both theoretically and experimentally. First, whip-
ping instabilities at the nozzle exit possess a local absolute

Fig. 2. (a) Photograph of a liquid fiber (viscosity µ = 7 Pa s)
of exit diameter 300 µm, drawn through a simple cylindrical
orifice of diameter D = 500 µm with length L = 150 µm, for a
gas exit velocity vg = 135 m s−1; (b) vg = 150 m s−1.

nature. These instabilities can be delayed by the liquid
viscous forces up to the point that they can be convected
downstream, and the whipping disappears. This occurs
when the viscous forces per unit volume, of the order of
µoV1/a2, are sufficiently large compared to the local ac-
celeration term, of the order of ρV1/tc, where tc is the
characteristic time of the instability (growing time), that
can be estimated by setting that the pressure drop in the
gas (δp) due to the distortion of the jet surface (δf) ac-
celerates normally the liquid jet:

δpg ∼ ρgU
2
g

δf

a
∼ aρ

δvl

δt
∼ aρ

δ2f

δt2
→ tc ∼

(
ρ

ρg

)1/2
a

Ug
,

(18)
where vl is velocity component normal to the undisturbed
liquid velocity (∼ V1). Thus, the number

Re =
(ρρg)1/2Uga

µo
(19)

should be smaller than a certain threshold value Re∗. We
have made a preliminary series of experiments with glyc-
erol and glucose syrup (µ = 0.6 and 7 Pa s, respectively),
see Figure 2, and determined that Re∗ � 0.25. As far as we
know, this is a new result for a co-flowing, concentric and
unbounded gas-fiber system at the exit of a small orifice.
Thus, we restrict our method to safe values of Re∗ below
this threshold. We will show in a practical case how this
apparently strong restriction does not preclude the exis-
tence of a parametrical region where stable “unlimited”
high speed fiber drawing is possible. Anyway, a further
refined analytical study on the asymmetric fiber instabili-
ties owing to the gas flow would be welcome, but it is out
of the practical scope and limited space of this work.

4.2 Nozzle geometry and suppression of the “drawing
resonance” axisymmetric instability: The isothermal
case

A convergent subsonic nozzle always produce a monotoni-
cally decreasing pressure along its axis. Our task is here to
obtain a pressure distribution suppressing the axisymmet-
ric instabilities described in [1–3] while minimizing energy
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Fig. 3. Cross-section view of the fiber drawn along a nozzle
as here proposed. Here, an optimal nozzle shape as discussed
in the text is plotted (λ = 5.65), together with the resulting
drawn fiber shape. The external curves represent the nozzle
shape, and the internal curves (close to r = 0) represent the
fiber shape. Arbitrary length x and r scales.

consumption. The parametrical space for optimization of
convergent nozzle geometries is in principle infinite; how-
ever, gas boundary layer growth and possible separation is
reduced with smooth nozzle shapes like the ones produc-
ing exponentially decreasing pressure distributions. Thus,
in order to reduce the problem of the convergent nozzle ge-
ometry to a single parameter, without loss of generality on
our aimed task, we have reduced the space of possible noz-
zle geometries to those producing pressure distributions of
the type:

p(x) − p∗ = ∆p e−λx (20)

where ∆p = po − pa, p∗ = pa − ∆p exp(−λ), and λ is a
single, real number to parameterize a sufficiently broad
family of nozzle geometries. The set of free parameters
{∆p, λ} will be optimized for the requirement of an unlim-
ited fiber drawing (i.e. fiber production) with a minimum
energy consumption (minimum ∆p). Thus, given a pres-
sure drop ∆p, we seek for λ values for which the drawing
is absolutely stable for any (unlimited) given productivity
(E value).

Now, consider the small axisymmetric perturbations
problem given by

f(x) = fe(x)
[
1 + α(x)eΛt

]
, v(x) = ve(x)

[
1 + β(x)eΛt

]
(21)

and governed by equations (16) in the IT limit (ζ = 1),
where fe(x) and ve(x) are the steady values of the problem
for the given boundary conditions (8)

f2
e ve = 1

ve
d2ve

dx2
−

(
dve

dx

)2

+ λ∆p e−λx = 0 (22)

where ve(0) = E−1 and ve(1) = 1. An example of a so-
lution of the steady equation (22) is depicted in Figure 3
where we plot the shape of the fiber and the geometry of
the micro-nozzle which give rise to such fiber shape. The

Fig. 4. An example of the stabilization effect of the pressure
distribution.

selected exponential decay of the pressure, λ = 5.65, as
will be shown below, allows the suppression of the instabil-
ities. α(x) and β(x) are complex functions with argument
small compared to 1, and Λ is the complex perturbation
growth rate. Pressure variations owing to the fiber section
fluctuations are of the order of O(αa2/A(x)) � O(α), and
thus will be neglected in the analysis. Thus, α and β are
governed by a set of 2 complex ODEs with homogeneous
boundary conditions that can be readily obtained from
equations (16)

2αΛf2
e +

d(2α + β)
dx

= 0

2
d2α

dx2
+ 2f2

e Λ
dα

dx
+ βf2

e λ∆p e−λx = 0 (23)

where α(0) = 0, β(0) = 0, and α(1) = 0. These
equations and boundary conditions determine the eigen-
value Λ, whose real part Λr gives the growth factor in
time. In Figure 4, we give the value of Λr as a function of
∆p for λ = 6 and E = 120.

For every given E and λ values, there is a correspond-
ing ∆p value above which any axisymmetric instabilities
are suppressed. In Figure 5 we plot the curves dividing
the {E, ∆p} space into stable (above the curve) and un-
stable (below the curve) parametrical sub-spaces, for sev-
eral λ values of practical interest. One may immediately
note from this plot that for every given λ value, there is
a particular limiting value of ∆p above which the fiber is
stable for any value of E > 1. In Figure 6, we plot these
limiting ∆p values as a function of λ, and obtain a univer-
sal minimum value of the pressure above which the fiber
is absolutely stable regardless of the fiber productivity E.

A minimum limiting ∆p value about 0.33 around the
point λ � 5.65 can be found. In this case, given a de-
sired fiber diameter a and fiber production velocity V1,
the minimum gas pressure drop Po −Pa necessary to have
absolute stability is given by the simple expression:

Po − Pa � µoV1/L (24)

with a nozzle shape given in Figure 1.
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Fig. 5. Stability values of ∆p vs. E for several λ values.

Fig. 6. Absolute stability values of ∆p vs. λ.

A further refinement of the nozzle geometry is pos-
sible introducing new geometrical parameters (the mini-
mum po value may be further optimized). This refinement
does not limit the generality of our analysis.

A practical case. Consider the production of
260 km/day of a fiber with a diameter of 100 µm.
The glass has viscosity µo = 103 Pa s at Θo = 1300 K
(ρ = 3000 kgm−3). Since V1 = 3 m s−1 � klL/(ρCa2) =
0.3 m s−1, the fiber can be considered quasi-isothermal
(IT limit). Using an optimum nozzle geometry
with length L = 15 mm and a pressure drop
Po − Pa = 2 × 104 Pa, both axisymmetric and whipping

instabilities can be avoided under our present results since
Re ∼ 10−2 in this case. The minimum theoretical power
consumption for gas pressurization is rather low for nozzle
sections below a square millimeter, and the heat power de-
pends on the general system lay-out. Scale-up is straight-
forward.
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